
Improvements to GlideinWMS Data Handling System
Evan Boldt

July 29, 2010

Northern Illinois University Research and Development Internship
Fermi National Laboratories

Evan Boldt 1

Table of Contents
1. Introduction..3
2. Changes Made..4

2.1 Slot Management..4
2.2 Transfer Resilience..5

3. Testing..6
3.1 Timing of Data Handling (DH) Phases...6
3.2 Slot Performance Testing with no Transfer Failures..7
3.3 Throughput Change During Connectivity Issues..9

4. Further Improvements..11
5. Conclusion...11
6. Acknowledgments..12
7. References..12

Evan Boldt 2

1. Introduction

During this Research and Development Internship (RDI) for Fermi National Accelerator
Laboratories, (FNAL) computer programming work was done to improve the reliability and
performance of distributed computing systems used by FNAL and its stakeholders. Specifically,
work was done on Condor and GlideinWMS.

Condor [1] is a high throughput distributed computing system. High throughput systems
are intended to fully utilize as many resources over time as possible, unlike high performance
systems, which are intended to quickly produce results. Condor is one of many kinds of job
distribution (batch) systems in use.

GlideinWMS [2], a management system widely used by the Open Science Grid (OSG)
[3], US CMS, Fermilab, and other OSG stakeholders, is used to create a uniform distributed
computing system. GlideinWMS distributes a glidein to grid resources, which receives condor
jobs from the main pool. In doing so, a grid resource of any type of batch system can be used
through the same Condor interface.

The enhancements also integrated with Globus.org file transfer services [4] since
transfers over supported methods can be activated through a standardized interface based on
user-specified transfer destinations rather than forcing the user to interface directly with the
service in their job.

There are three main phases to a job: stage in, when data and executables are downloaded
to the worker node; processing, when the real work of the job is being done; and stage out, when
data is uploaded back to the user. These three phases must happen sequentially and do not
compete for resources on the worker node. The concept of instruction set pipelining [5] in
computer architecture is similar to an assembly line and can be applied to job phases.
Independent operations can be performed on separate jobs simultaneously. One job can be in the
processing phase while the previous job is in the stage out phase. Currently, phases are not
separated and are not pipelined. So, the worker node’s resources are not fully utilized while data
is being transferred over the network. Another downfall to the lack of phase separation is that a
transfer failure is not distinguished from a runtime failure, causing the job to be restarted from
the beginning if the results are not returned. Separating the phases allows the job to be restarted
directly to the transfer phase, rather than downloading and executing the job again.

Evan Boldt 3

2. Changes Made

2.1 Slot Management
The RDI project for the Center for Enabling Distributed Petascale Science (CEDPS) [6]

aims to increase throughput on grids using GlideinWMS by allowing another job to run during
data return for the previous job, and by improving data return reliability. The Data Handling
(DH) Slot Management system is written in BASH, and replaces user-written, in-job upload
systems. Instead of including the return mechanism in the executable, the job is submitted with
extra information in the submission description file. When this extra information is present and
the resource-intensive processing phase of the job is done, the Data Handling (DH) begins. First,
the system looks for files that match a user-specified regular expression. If the files are large
enough, a new slot is created in the background, which can take new jobs.

Figure 1: Timeline showing that Data Handling (DH) reduces CPU idle time by creating another glidein.
(Phases not to scale)

The overlapping of jobs causes upload and download to happen simultaneously, as seen
in Figure 1. Upload and download speeds do not compete locally due to network duplexing. The
network usage for simultaneous upload and download should be less than the maximum
throughput of the hard disk system on the worker node. Overall bandwidth usage for the entire
grid will not increase more than the throughput increase due to slot management. So, as long as
the network connection of the grid to the destinations is not at capacity, simultaneous network
usage will improve throughput.

Ideally, resource-intensive phases should be adjacent, allowing the full resources of the
system to be used continuously. Data Handling (DH) slot management does not replace the
download mechanism. One reason Data Handling does not support download methods is because
file selection from remote sources could be unreliable. More importantly, however, a job should
not be claimed until it can be executed. The claimed job could be used by an idle worker node,
and the claimed job would have to wait for the current job to finish executing, which may take a
long time. Even after the waiting, the claimed job may never execute since the glidein could
expire after the current job is done.

Evan Boldt 4

 Glidein Slot 2

Job 2

Idle

Glidein Slot 1

Glidein

Job 1 Job 2

Processing Stage Out

Job 1

DH Upload

DH Slot Management

Condor Job Management Alone

ProcessingStage In

Stage In Processing

Stage In

Stage In Processing

2.2 Transfer Resilience
While a new slot is being created and a new job is running, Data Handling transfers the

data files through the path tree (Shown in Figure 2), going through each waypoint, which
includes intermediate storages and destination storages, and fallback path until all data gets to a
destination. [10] Fallback paths may reuse waypoints, or it may follow new ones. For each
transfer, a plugin is activated, based on the protocol in the URI, for the next waypoint to be
traversed. Users may download their own custom plugins to support new file transfer protocols.
At runtime, plugins are selected based on a simple match from the protocol prefix in the URI to
the plugin filenames.

Figure 2: An example path tree that the data would travel through for this path string:
+WMS_OUTPUT_LOCATION="gsiftp://primarydestination/;gsiftp://fallbackintermediate/,gsiftp://primarydestination/”

When a job ends, all files for the job are removed from the worker node by condor. In

order to resume the transfer, the returning files must be moved off of the worker node so setting
a local intermediate to act as a fallback, as done in Figure 2, allows Data Handling to resume the
transfer to the destination when the job is restarted, only using the intermediate in the event of
transfer failure.

Many data transfer protocols can be supported. Currently, there are two plugins written.
One utilizes globus-url-copy, which can transfer to and from http, https, ftp, file, and gsiftp. The
other plugin uses globus.org, which manages gsiftp transfers. Protocols can be mixed, but only to
an extent. The previous waypoint must use a protocol that the current transfer waypoint supports.
So, a path could transfer using ftp, then gsiftp, then globus. However, a path cannot transfer to
ftp then to globus. Users may also use custom plugins to support new protocols, or to override
functionality of default ones. These plugins should be downloaded using condor’s
“transfer_input_files” in the submission description file because if user-added plugins were
downloaded as a part of the job, they will not be downloaded if a job is restarted to resume a
transfer on another worker node since the download and CPU phase of the job are skipped. So,
the custom protocol support plugins must be transferred outside of the job.

If all transfer paths fail to reach a destination, each path will be retried for up to 6 hours
with exponential backoff [7], exponentially increasing delay between retry attempts. If the
glidein is killed or the transfers were retried for 6 hours, the local data will be deleted by condor
and the job will be restarted on another worker node where transfers can be resumed from
intermediate storages, if the path specified in the job description travels through intermediates in
primary or fallback paths.

One potentially beneficial side effect is that the URI’s for any storage that had a transfer
failure are advertised in job classads [8], in order to allow the job to be restarted on another node.
These classads are all gathered by condor in a central collector. So, administrators can easily
monitor these classad attributes to be quickly notified of network or storage problems.

Evan Boldt 5

Files Matching
Regular Expression

#1 Failed Transfer

Fallback
Intermediate

Storage

Primary
Destination#2 #3 Failed

Transfer

3. Testing

All testing was done on a single virtual machine, which ran the factory and frontend,
which are components of GlideinWMS. The factory submits glideins to the local machine, so
jobs are executed locally as well. The factory submits only one glidein to the local machine.

3.1 Timing of Data Handling (DH) Phases

A Data Handling job starts the same way that a regular job would. It is submitted,
negotiations determine if and where the job shall be executed, then the necessary files are
downloaded and execution begins.

Figure 3: Measured timing of a the actions a Data Handling job takes
(timeline spacing not to scale)

Once a Data Handling job enters the DH phase, it searches for files, and attempts to
transfer them along the first path, falling back to alternate paths. When a failure happens,
typically it will retry the transfer for up to 6 hours, but in the above timeline that was disabled.
So, it vacated the job to another node, where the transfer resumes. In the above test, what had
caused the transfer failure was quickly fixed, and the transfer succeeded on restart.

Evan Boldt 6

Timing Analysis of a Data Handling Job
30 minute processing time, Creates a 1GB file, Transferred Locally

1 path: an intermediate and destination

0m
Job

submited

Stage in &
processing

begins
1m

31m26s
1GB file

transferred to
intermediate

Simulated failed transfer
to destination & job

vacated to another node
31m28s

32m31s
Data handling

resumes on
another node

Data
handling
begins
30m4s

1GB file
transferred to
destination

33m56s

3.2 Slot Performance Testing with no Transfer Failures

In this test, run time is the time for the job to finish, and includes the time to download
data to the worker node and the CPU intensive phase, but does not include upload time. New slot
idle time is the time for a newly created glidein to be recognized by the collector and assigned a
job, which should take about 60 seconds. There are six jobs with eight minute runtimes are
submitted in each pass, each job having an eight-minute run time. Each pass increases simulated
upload durations for each of the six jobs.

Graph 1: Shows the difference in performance with respect to transfer duration

A pass does not finish until all jobs have finished reporting “Running” status in the
condor queue. As a result, the run time for Data Handling (DH) slot management increased by a
time of one transfer duration. This is because of the transfer for the last job. Even though another
glidein was created, and could accept another job, there were no jobs remaining to accept. So,
there is no throughput change for Data Handling jobs if there are no jobs waiting in the queue.

While the run time for DH slot management increases by one upload duration for every
pass, the run time for condor alone increases by six upload durations for every pass. However,
since the DH slot management system is able to start a new job during the last transfer, the
difference in run time per pass is six upload durations, assuming that more jobs are always
available and neglecting new glidein idle time.

Evan Boldt 7

0 60 120 180 240 300 360 420
45

50

55

60

65

70

75

80

85

90

Throughput Comparison Against Transfer Durations
Time for 6 8-minute Jobs to Finish Running

DH Slot Management Linear Regression for
DH Slot Management

Condor Alone Linear Regression for
Condor Alone

Transfer Duration for Single Job (sec)

T
im

e
fo

r
al

l j
ob

s
to

 f
in

is
h

"R
un

n
in

g
"

st
at

us
 (

m
in

)

Since a glidein is ready to receive a job at the start of each pass, there are 5 new slot idle
times for each DH slot management pass, instead of six. According to the pass with zero seconds
of simulated upload duration, new slot idle time is approximately 60 seconds per slot or five
minutes per pass. In cases where transfer time is less than new slot idle time, decreased
performance is seen. If transfer durations are constant and are 60 seconds per job, and the
transfer speed is 10MBps, then the total size of the transfers per job must be greater than 600MB
for a gain in throughput by creating a new slot. DH Slot Management could attempt to guard
against these cases, but it is difficult to reliably predict transfer duration because transfer speeds
can change. Theoretically, new slot idle time could be reduced by decreasing the communication
interval between condor components, though it is unclear that this would be practical due to the
extra network traffic and strain on the main collector.

This test shows the importance of Data Handling correctly deciding whether or not to
create a new slot. If transfers are typically short, then new slot creation will hurt throughput the
majority of the time. Throughput changes should follow the percentages shown in Table 1.

With Data Handling, a new job runs at the same time as the output data of an older job is
being transferred. The idle time for the new job to start in another slot does not slow down the
data transfer slot, but may take longer than the transfer alone. This slot overlapping model results
in an overall higher throughput as compared with the standard serial model, as shown by the
following formula:

Projected throughput change as a percentage:
(Upload Duration – New Slot idle Time) / (Upload Duration + Run Time)

Table 1: Examples of projected throughput changes with estimated real-world values

While the maximum number of concurrent upload slots has not been reached, throughput
should follow the formula. When the glidein hits the maximum number of data slots allowed, the
benefit of overlapping transfers ceases because new slots are not created until the data is
transferred. The maximum should not be reached as long as upload duration does not exceed run
time, which should not happen unless there is network failure. In the event of network failure,

Evan Boldt 8

0 1 60 -1.67%
5 1 60 6.15%

10 1 60 12.86%
30 1 60 32.22%
0 3 60 -0.56%
5 3 60 2.16%

10 3 60 4.74%
30 3 60 13.81%
0 6 60 -0.28%
5 6 60 1.10%

10 6 60 2.43%
30 6 60 7.44%

Maximum 32.22%
Minimum -1.67%
Average 8.93%

Upload Duration
(minutes)

Run Time
(hours)

Idle Time
(seconds)

Throughput Change
(%)

condor currently deletes the output data and gets a new job. Slot management allows new jobs to
run while jobs only transferring data may remain in the worker node until the output is uploaded
or the glidein is killed, reducing waste and improving performance during temporary storage
downtime. Furthermore, in the event a glidein is killed and the job is moved to another node,
Data Handling allows transfers to be resumed by using intermediate storages.

3.3 Throughput Change During Connectivity Issues

Transfers can temporarily fail due to several causes: the network connection for the grid
is down, the network connection for the destination is down, the destination storage is full, or the
destination server is overloaded. Data Handling can wait for these issues to be resolved and
resume the transfer later.

Transfers can permanently fail due to authentication issues, decommissioned servers,
improperly configured transfer settings, firewalls, and invalid addresses. Data Handling can
recover from these failures by using fallback paths.

In both cases, traditional transfer methods would fail to transfer the data, and the work
would be destroyed. Depending on the configuration for checkpoints, when a snapshot of the job
is taken as a backup to allow execution to resume on hardware failure, then the job may have to
be completely run again, which makes the job run twice as long as it should, and the computing
resources that were used have been wasted.

Evan Boldt 9

Exactly one hour after the simulation starts, the destination storage cannot receive
transfers for another hour, but the intermediate storage is available. The path tree has only one
path, which describes that transfers go to an intermediate then to the destination, but the
destination may have downtime. Each job has an execution phase of ten minutes, and transfers
one 100MB file. Transfers are done locally, but using gridftp [9]. Only the destination storage is
failing during the downtime, so worker nodes can still receive more jobs.

Graph 2: Shows the difference in performance in the event of network/storage outage

Since transfers are to the same machine, they are transferred at an unrealistic speed of
100MBps, which means that the file is transferred in a second. So, the new slot idle time,
typically 60 seconds, is not exceeded by transfer time in this test, making extra slot creation
detrimental to performance on Data Handling jobs, as shown in Graph 1, has an impact in Graph
2, because the algorithm for determining whether a slot needs to be created did not expect the file
to be transferred so quickly. In this test, each DH jobs take longer to finish because of new slot
idle time, yet the reliability increase by backgrounding transfer reattempts outweigh the problem.

Jobs without Data Handling restart from the beginning if data could not be transferred to
a destination. Data Handling retries transfers while allowing new jobs to run, and could vacate
the job to another worker node. Depending on the job, the user added data return methods may
also have a transfer retry system, ensuring data gets to the destination when it comes back online.
However, while these jobs are retrying the transfers, no other jobs can run, since no extra slot is
created. So, without slot management, transfer retries decrease performance, sometimes worse
than if the job was restarted and the next job does not use the same destination storage.

Evan Boldt 10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Throughput during Data Return Failure
10 min per job, 1 node, Destination Downtime from 60-120 minutes

DH with 6 hour retry DH with 2 min retry then
vacate

No DH Destination Storage
Downtime

Minutes Since Test Start

Jo
bs

 C
om

pl
et

ed

During the downtime when Data Handling is enabled and jobs are restarted after a brief
two-minute retry, only three jobs were completed, while the test with only retries finished six.
This is because when a job vacates the slot, the same job goes back into the slot. After the third
job is finished, new slots only receive completed jobs. This problem could be fixed by allowing a
longer retry period, or by modifying the glidein's preferences to avoid jobs that entered the DH
phase and were recently vacated, and to prefer DH jobs that have not been started yet. This can
be done by modifying the classad for the glidein.

This reliability test proves that transfer retries, in conjunction with Data Handling slot
management, improves throughput for temporary destination transfer failures, but refinement is
needed for the slot creation decision algorithm and job negotiation.

4. Further Improvements

In the future, Data Handling could be enhanced in several ways. The most important
improvement is intelligently deciding to create new slots. New slots should only be created when
transfer time is expected to take longer than the time for a new job to be received by the new
slot. There should be many ways to decide this. Currently, a user-specified data size threshold is
used, but this is unreliable because transfer rates can vary drastically. Also, new slots are always
created when a transfer fails, but transfers succeed more often than they fail, so it is extremely
important that durations are properly predicted at the start of Data Handling. Another potential
improvement, as shown in the reliability test, is that glideins should avoid receiving recently
vacated jobs that entered DH phase.

Currently, intermediate storage is specified by the user. While a user may choose which
site the job should be run on, it may be desirable to allow it to run on more than one site, making
it impossible to specify a local storage. Ideally, intermediate storage should be local to the grid
site, and accessible over the LAN so transfers are high speed, and do not rely on a wide area
internet connection. For end user convenience, more default plugins could be developed to
support more transfer methods and protocols like SRM and LCG-CP. Many intermediate storage
systems will delete older files, but it may be preferable to have the job delete the files from the
intermediate storage when the files have been transferred to a destination, since the intermediate
storage is no longer needed. Some distributed computing applications have extremely large input
data, and relatively small output. In these situations, the input data may be a directory with many
files, and the regular expression that chooses upload files may match unwanted files. To protect
storage from being unnecessarily filled, the file selection system could be enhanced to limit the
number of files matched, and the overall size.

5. Conclusion

Current condor data returns impact throughput on longer transfers, sacrifice throughput
for reliability, and discards results on transfer failure. Data Handling is designed to improve
throughput by allowing more jobs to run during data return and transfer retries, and can save
results from being discarded by transferring data to local storage. Data Handling does improve
throughput in two situations: when a new slot is created, the transfer duration is longer than the
time for the new slot to receive a new job; or, when transfers cannot be completed to a
destination temporarily. So, in order to maximize throughput with Data Handling, properly
determining when to start a new slot will be vital. The usage of intermediate and fallback storage
will improve transfer reliability and grid throughput in the event that the failure will take longer
to fix than a glidein’s remaining lifespan.

Evan Boldt 11

6. Acknowledgments

This work was made possible due to a Northern Illinois University (NIU) Research and
Development Internship (RDI) at Fermi National Accelerator Laboratories for the Center for
Enabling Distributed Petascale Science (CEDPS). Thanks to the GlideinWMS team, Globus.org
team, Fermilab Computing Division, and the NIU Computer Science Department.

7. References

[1] Condor
http://www.cs.wisc.edu/condor/htc.html

[2] GlideinWMS -
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/tutorials/structur
al_overview/structural_overview.pdf

[3] Open Science Grid
https://twiki.grid.iu.edu/bin/view/Documentation/UsingTheGrid

[4] Globus File Transfer Services
http://www.mcs.anl.gov/~childers/quickstart/

[5] Instruction Set Pipleining
http://en.wikipedia.org/wiki/Instruction_pipeline
www-csag.ucsd.edu/teaching/cse141-w00/lectures/PipeliningI.pdf

[6] Center for Enabling Distributed Petascale Science
http://www.cedps.net/index.php/Nutshell

[7] Exponential Backoff
http://en.wikipedia.org/wiki/Exponential_backoff

[8] Condor Job Classads
http://www.cs.wisc.edu/condor/manual/v6.4/4_1Condor_s_ClassAd.html
http://www.cs.wisc.edu/condor/manual/v6.3/2_3Condor_Matchmaking.html

[9] GridFTP (GSIFTP)
http://en.wikipedia.org/wiki/GridFTP
http://www.globus.org/alliance/publications/papers/IFIP-2006.pdf
http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html

[10] Waypoints and End-User Data Handling Functionality
http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=4027&version=1&filename=dh
%20usage.pdf
http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?
docid=4027&version=1&filename=dhComparison.pdf

Evan Boldt 12

	1. Introduction
	2. Changes Made
	2.1 Slot Management
	2.2 Transfer Resilience

	3. Testing
	3.1 Timing of Data Handling (DH) Phases
	3.2 Slot Performance Testing with no Transfer Failures
	3.3 Throughput Change During Connectivity Issues

	4. Further Improvements
	5. Conclusion
	6. Acknowledgments
	7. References

